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Abstract: The synthesis of the C-28 through C-38 segment of the marine natural product okadaic acid
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chiral vinylogous urethane cnolate. The stereocenter at C-29 was addressed utilizing a diastereoselective
hydroboration reaction. © 1998 Elsevier Science Ltd. All rights reserved.

Okadaic acid 1 is a marine natural product isolated from the Halichondria okadaia and Halichondia
melanodocia.! Currently, there are two total syntheses of okadaic acid which, in contrast to our approach, begin
with carbohydrate starting materials.? Our route to okadaic acid relies on the generation of chirality vig auxiliary
driven enantioselection. The previous thrce papers described the efficient synthesis of the three segments

representing C-1 through C-26 of okadaic ac ,id 1. The key carbon-carbon hond forming reactions illustrated in
these papers cmploy exther a stereoselective aldol, acylation-reduction or alkylation protocol utilizing chiral
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Scheme 1

This paper will provide an account of our recent effort towards the preparation of the spiroketal 19
which embodies C-28 through C-38 of okadaic acid 1.3 The syn-anti stereochemical triad (C-31 to C-29) will
be addressed by incorporating two stereochemical determining reactions. An enantioselective syn aldol
condensation using a chiral pyrrolidine auxiliary will establish the C-30/C-31 stereocenters while a
diastereoselective hydroboration will configure the third chiral center at C-29.
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spiroketal fragment 1% (C-28 to C-38) of okadaic acid. Condensation of the VU enolate, prepared from 2 and

LDA, with methacrolein provided the syn vinylogous urethane lactone (VUL) 3 with high levels of enantio- and

diastereoselectivity.
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the hydrogenation conditions, again using Rh(1,4-DIPHOS)(NBD)*BF,- resulting in moderate levels of

selectivity favoring the desired syn-syn VU lactone 8. The selectivity of the hydrogenation of VUL § is in

accord with hydroxyl coordination to the rhodium catalyst in a conformation in which the olefin is synplanar

with respect to the adjacent carbon-oxygen bond of the lactone ring. Delivery of the Rh bound hydrogen will

occur from the n-face of the olefin anti with respect to the psuedo axial methyl group at C-31 (okadaic acid

2

stereocenter at C-29 vig a diastereoselective hydroboration.!9 Thus, treatment of VUL 3 with BH3-THF

numbering). Disappointed with the stereoselectivity of the hydrogenation result, we decided to incorporate the

material.
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Scheme 4: (a) BH3-THF, THF, 0°C (b) Me3NO-2H,0, diglyme, 120°C

The diastereoselectivity of the hydroboration can be rationalized if one assumes an early transition state

for the hydroboration reaction where the ground state conformation and the reactive conformation are similar in
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structure. As with olefin §, the VUL 3 will lie in a syn-planar orientation with the carbon-oxygen bond of the
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The alcohol 18a was protected as the ter-butyldiphenylsilyl ether 12. The chiral auxiliary was removed
as in the previous example to provide the unsaturated lactone 13. At this juncture, the spiroketal moiety (ring G)
was constructed beginning with the addition of the lithium acctylide 14 to the lactone 13 to provide the ketone
15 in high yield.12
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Scheme 5: (a) TBDPSCL, CH;Cly, DMAP, imidazole (b) NaCNBHj3, THF, HCI (¢) CH3CO2H, A
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(d) THF, 14, -40°C (e) Ri/Aiy03, Ex0, Hy (150 psi) (i) HF, HaO, CH3CN

The hydroxy-ketone 15 was hydrogenated!3 using Rh/Ale3 and subsequent spirocyclization by
treatment of 16 with aqueous HF provided the ketal 17.14 The stereocenter at C-34 is in accord with the
anomeric effect.15 Direct conversion of alcohol 17 to sulfide 18 using N-thiophenylisuccinimide!6 foliowed by
oxidation with m-CPBA17 gave the desired sulfone 19 in 10 steps with a 33% overall yield. Sulfone 19 was

identical to the published spectral and physical data reported by Isobe.2
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scheme 6: (a) N-thiophenylsuccinimide, BuaP,benzene (b) m-CPBA, CH)Cly

In conclusion, the synthesis of the C-28 through C-38 segment of okadaic acid, 1 was accomplished
employing a highly enantioselective syn aldol condensation reaction of a chiral vinylogous urethane enolaie. The
stereocenter at C-29 was addressed utilizing a diastereoselective hydroboration reaction. The remaining carbon
skeleton of 19 was constructed from the lithium acetylide 14 by addition to the lactone 13.
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